УТВЕРЖДАЮ

Директор

НИЦ «Курчатовский институт» - ИФВЭ,

д. ф.-м. н., академик

С.В. Иванов

2021 г.

ЗАКЛЮЧЕНИЕ

Федерального государственного бюджетного учреждения «Институт физики высоких энергий имени А.А. Логунова Национального исследовательского центра «Курчатовский институт»

Диссертация на тему «Экспериментальные исследования по управлению пучками заряженных частиц и генерации направленных потоков излучения с помощью новых кристаллических устройств на ускорителях» выполнена Яновичем Андреем Антоновичем, научным сотрудником Отделения экспериментальной физики НИЦ «Курчатовский институт» - ИФВЭ.

Научный руководитель – кандидат физико-математических наук Маишеев Владимир Александрович, ведущий научный сотрудник Отдела пучков НИЦ «Курчатовский институт» - ИФВЭ.

В 1992 году Янович А.А. окончил физический факультет МГУ имени М.В. Ломоносова. В 2006 г. Янович А.А. сдал кандидатские экзамены экстерном: «Английский язык» (отлично), «История и философия науки» (хорошо), в 2021 г. «Физика пучков заряженных частиц и ускорительная техника - 01.04.20» (хорошо).

По итогам обсуждения на заседании семинара Отделения экспериментальной физики НИЦ «Курчатовский институт» - ИФВЭ с привлечением сотрудников Отделения ускорительного комплекса У-70 принято следующее заключение:

Диссертационная работа выполнена на высоком научном уровне при непосредственном участии соискателя. Автор принимал активное участие в подготовке и проведении исследований на канале 4а ускорителя У-70. Программное обеспечение системы сбора данных и первичного анализа данных для этих исследований были созданы автором. В экспериментах на канале 4а ускорителя У-70 и в рамках коллаборации UA-9 ускорителя SPS CERN автор принимал участия в наборе и обработке экспериментальных данных, а также проводил физический анализ данных. Личный вклад автора в научные работы, опубликованные по теме диссертации, отражен в содержании диссертации и в основных положениях, представленных к защите.

В рамках диссертационной работы получены следующие результаты:

- 1. В экспериментах по новой оптике пучков получена детальная информация о качестве фокусировки для двух типов изогнутых кристаллов. Показано, что принцип линзы выполняется с высокой точностью (наблюдается линейная зависимость угла отклонения частицы от ее поперечной координаты в линзе). Экспериментально подтверждено, что кристаллические устройства первого типа в режиме прямой фокусировки могут использоваться в реальных системах формирования пучков выведенных частиц, а в режиме обратной фокусировки (фокусировка из точки в параллель), для формирования направленных потоков вторичных частиц, генерируемых на нитевидных мишенях, без применения магнитной оптики. Для фокусирующего кристаллического устройства второго типа получена фокусировка на короткое расстояние порядка 15 см.
- 2. В экспериментах по отклонению с помощью объемного отражения 400 ГэВ протонов и 180 ГэВ отрицательных пионов на ускорителе SPS в CERN для восьми-полоскового кристаллического устройства первого типа в плоскостной ориентации эффективность отклонения составила для протонов около 94% и для отрицательных пионов около 71%. В осевой ориентации многополосного кристаллического устройства угловая ширина пучка (RMS угла отклонения) была в 4 раза больше для протонов и почти в 3 раза больше для отрицательных пионов, чем для плоскостной ориентации. Для пятиполоскового кристаллического устройства второго типа (в котором изгиб полос происходит без внешнего изгибающего устройства) для 400 ГэВ протонов в плоскостной ориентации эффективность отклонения составляла около 90%. В осевой ориентации кристаллического дефлектора угловая ширина пучка была почти в 3 раза больше, чем для случая кратного отражения в плоскостной ориентации. Многополосковые кристаллы первого типа можно использовать для коллимации пучка в ускорителях высоких энергий, а кристаллы второго типа для коллимации пучка сверхвысоких энергий. Это особенно важно для пучков отрицательно заряженных частиц из-за низкой эффективности каналирования.
- 3. Создана программа расчета потерь энергии на излучение в изогнутом монокристалле и многополосковом устройстве. Алгоритм программы использует новую модель, которая основана на идеи локальности когерентного тормозного излучения с помощью Монте-Карло моделирования и позволяет учитывать многократное рассеяние электронов (позитронов) и кратность излучения фотонов. Расчеты, выполненные с использованием новой модели, достаточно хорошо согласуются с экспериментальными данными и с другими аналогичными расчетами в рамках различных моделей.
- 4. В эксперименте по генерации излучения при взаимодействии электронного пучка с энергией 7 ГэВ с новой много-полосковой структурой показан рост потерь энергии на излучение в 1,3 раза для плоскостной и в 2,5 раза для осевой ориентации много-полосковой структуры по сравнению с неориентированным случаем. Таким образом, был продемонстрирован источник излучения высокоэнергетичных фотонов, имеющий перспективы практического применения на ускорителях.

Материалы диссертации опубликованы в 11 научных работах в журналах, индексируемых в базах ВоС, СКОПУС и РИНЦ, в том числе 6 работ в Письма в ЖЭТФ, 2 работы в Phys. Rev. Accel. Веаms и 3 работы в Nucl. Instrum. Methods В:

- 1. Афонин А.Г., Баранов В.И., Баранов В.Т., Бритвич Г.И., Янович А.А. [и др.] Исследование фокусировки пучка протонов с энергией 50 ГэВ с помощью нового кристаллического устройства // Письма в ЖЭТФ. 2012. Т. 96. № 7. Октябрь 2012. С. 470-473.
- 2. Scandale W., Arduini G., Cerutti F., Yanovich A.A. [et al.] // Comprehensive study of beam focusing by crystal devices // Phys. Rev. Accel. Beams. 2018 Vol. 21. No 1. January 2018. P. 014702.

- 3. Афонин А.Г., Баранов Е.В., Бритвич Г.И., Янович А.А. [и др.] Фокусировка пучка частиц высокой энергии на предельно коротком расстоянии // Письма в ЖЭТФ. 2017. Т. 105. № 12. Август 2017. С. 727-729.
- 4. Scandale W., Arduini G., Cerutti F., Yanovich A.A. [et al.] Focusing of a particle beam by a crystal device with a short focal length // Nucl. Instr. And Meth. in Phys. Res. B. 2018. Vol. 414. January 2018. Pp. 104-106.
- 5. Афонин А.Г., Бритвич Г.И., Бугорский А.П., Янович А.А. [и др.] Отклонение расходящегося пучка протонов с энергией 50 ГэВ с помощью фокусирующего кристаллического устройства // Письма в ЖЭТФ. 2016. Т. 104. № 1. Июль 2016. С. 9-12.
- 6. Scandale W., Arduini G., Cerruti F., Yanovich A.A. [et al.] Focusing of 180 GeV/c pions from a point-like source into a parallel beam by a bent silicon crystal // Nucl. Instrum. Methods Phys. Res. Sect. B. 2019. Vol. 446. May 2019. Pp. 15-18.
- 7. Scandale W., Arduini G., Butcher M., Yanovich A.A. [et al.] Comparative results on the deflection of positively and negatively charged particles by multiple volume reflections in a multi-strip silicon deflector // Письма в ЖЭТФ. 2015. Т. 101. № 10. May 2015. С. 755-760.
- 8. Scandale W., Arduini G., Butcher M., Yanovich A.A. [et al.] Deflection of high energy protons by multiple volume reflections in a modified multi-strip silicon deflector // Nucl. Instr. And Meth. in Phys. Res. B. 2014. Vol. 338. November 2014. P.108-111.
- 9. Маишеев В.А., Сандомирский Ю.Е., Чесноков М.Ю., Чесноков Ю.А., Янович А.А., Язынин И.А. Использование отражения частиц в изогнутых кристаллах для коллимации пучка в больших адронных коллайдерах // Письма в ЖЭТФ. 2020. Т. 112. № 1. Июль 2020. С. 3-8.
- 10. Афонин А.Г., Баранов В.Т., Бритвич Г.И., Бугорский А.П., Янович А.А. [и др.] Излучение фотонов при взаимодействии электронного пучка высокой энергии с последовательностью изогнутых монокристаллов // Письма в ЖЭТФ. 2018. Т. 107. № 8. Апрель 2018. С. 477-480.
- 11. Afonin A.G., Barnov E.V., Britvich G.I., Chesnokov Yu.A., Yanovich A.A. [et al.] Implementation of multistrip crystals to protect the septum magnets and to generate gamma radiation // Phys. Rev. ST Accel. Beams. 2019 Vol. 22. No 3. March 2019. P. 033001.

Заключение принято на заседании семинара Отделения экспериментальной физики НИЦ «Курчатовский институт» — ИФВЭ. На заседании присутствовало 43 человека, среди которых 11 докторов и 15 кандидатов физико-математических наук. Результаты открытого голосования: «за» — 43 человека, «против» — 0 чел., «воздержались» — 0 чел., протокол № 1/21 от 27 января 2021 г.

Теоретическая и экспериментальная части работы представлены в диссертации в надлежащем объёме. Тематика работы полностью соответствует специальности 01.04.20 — физика пучков заряженных частиц и ускорительная техника. Диссертационная работа рекомендуется к защите на соискание ученой степени кандидата физико-математических наук.

Секретарь семинара ОЭФ, д. ф.-м. н., внс НИЦ «Курчатовский институт» – ИФВЭ

С.А. Садовский