МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Университет «Дубна» Филиал «Протвино»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

БАКАЛАВРСКАЯ РАБОТА

Тема: «Изучение реакции $\pi^- p \rightarrow n\omega\omega$ при импульсе 29 ГэВ/с»

Ф.И.О. студента: <u>Загитов Рустем Рустемович</u> Группа: <u>ПФ191</u> Направление подготовки: <u>03.03.02 Физика</u> Направленность образовательной программы: <u>Медицинская физика</u> Выпускающая кафедра: *Техническая физика*

Протвино, 2023 г.

1 Введение

На установке ВЕС ИФВЭ проводятся исследования ядерных реакций, происходящих при столкновениях частиц высоких энергий с ядрами фиксированной мишени. Основной интерес представляют t-канальные реакции, что существенно сказывается на геометрических особенностях установки. В 2023 году в ИФВЭ проведена работа по исследованию реакции с рождением $\omega\phi$ -системы (см. [1]). В этой работе используются результаты 2005 года по родственной системе $\omega\omega$ (см. [2]). За прошедшее время экспериментальная установка была модернизирована, а методика обработки данных усовершенствована. Интерес настоящей работы заключается в проведении нового анализа для $\omega\omega$ -системы по улучшенным экспериментальным данным. Требуется обработать часть массива экспериментальных данных установки ВЕС, произвести последовательное отсеивание сторонних реакций. Выделить статистику рассматриваемой реакции. Построить распределения некоторых физических величин и оценить полученные результаты.

2 Экспериментальная установка

Установка ВЕС представляет собой магнитный спектрометр, расположенный во вторичном канале протонного синхротрона У-70. Пучок отрицательно заряженных частиц состоит из пи-мезонов π^- , каонов K^- , электронов e^- и антипротонов \bar{p} в количественном отношении 98:1.6:0.2:0.2. Пучок ускоряется до установочного импульса 29 ГэВ и подаётся на бериллиевую мишень установки. Распределение по импульсу нормальное, со среднеквадратичным отклонением 0.25 ГэВ. Аппаратура ВЕС позволяет производить измерения 4-импульсов частиц, рождающихся в ядерных реакциях. Внешний вид установки показан на рис.1.

Секция пучковой идентификации расположена в пространстве до мишени и состоит из следующих детекторов: сцинтилляторов S_1, S_2, S_3 , пропорциональных камер, а также пороговых черенковских счётчиков.

В пространстве перед магнитом установлена бериллиевая мишень. Она занимает место в воздушном зазоре алюминиевого держателя. Мишень представляет собой металлический цилиндр высотой 40 мм и с торцами 45-мм диаметра. Воздушный зазор держателя перед мишенью имеет цилиндрическую форму, за мишенью - коническую. Держатель подавляет распространение протонов отдачи и дельта-электронов. Он установлен в систему VETO, которая препятствует движению продуктов реакций с большими поперечными импульсами.

Мишень размещена перед главным устройством установки - магнитным спектрометром. Магнитный спектрометр представлен дипольным магнитом, отклоняющим траектории движения заряженных частиц, а также многопроволочными и дрейфовыми камерами, определяющими эти траектории на входе и выходе магнита. По характеру и величине отклонения траекторий в магнитном поле определяется импульс и заряд частиц. Дипольный магнит имеет высоту около 1м и ширину 2м. Описанные геометрические особенности держателя и системы VETO соответствуют его апертуре. Вертикальная компонента создаваемого поля примерно равна 1.1 Тл. Перед магнитом точно на пучковой траектории установлены два сцинтиллятора BK_1, BK_2 диаметром 70 мм, необходимые для устранения не провзаимодействовавшей в мишени части пучка. На входе магнита располагаются три многопроволочные пропорциональные камеры с эффективной площадью 40х25 cm² и пять дрейфовых камер с площадью 60х40 cm². Две дрейфовые камеры помещены внутри зазора магнита. На некотором расстоянии за магнитом находятся три

панели с дрейфовыми трубками размером 1.5х2 m^2 . Разрешение магнитного спектрометра при импульсах 30 ГэВ - 1 процент.

28-канальный пороговый черенковский счётчик расположен за магнитом и служит для установления сорта пролетающих через его радиатор вторичных заряженных частиц.

Последним прибором установки BEC является электромагнитный калориметр, определяющий энергию гамма-квантов и координаты их детектирования.

Записывается следующий цифровой сигнал:

 $Trigger MAIN = S_1 \land S_2 \land S_3 \land \overline{VETO} \land \overline{BK_1} \land \overline{BK_2}$

Впоследствии будут рассматриваться только реакции, для которых TriggerMAIN = 1.

Ознакомиться с устройством установки ВЕС можно в [3].

Рис. 1: Установка ВЕС. Обозначения: 1 - сцинтилляторы пучковой секции, 2 - пропорциональные камеры, 3 - система VETO с мишенью, 4 - пропорциональные камеры спектрометра, 5 - дипольный магнит, 6 дрейфовые камеры, 7 - светособирающие конусы, 8 - зеркала, 9 - радиатор черенковского счётчика, 10 - панели с дрейфовыми трубками, 11 электромагнитный калориметр.

3 Получение экспериментальных данных

Результаты эксперимента, так называемые сырые данные, снимаются с аппаратуры в автоматическом режиме и сохраняются на электронных носителях в виде объёмных файлов размером до 1 Гб. Магнитный спектрометр ВЕС вычисляет величину и направление импульса заряженной частицы, а черенковский детектор позволяет определить её массу. Этих сведений достаточно для расчёта энергии частицы. Электромагнитный калориметр даёт знание о величине энергии и направлении движения детектированного гамма-кванта, что позволяет определить и вектор импульса фотона. Таким образом, установка ВЕС даёт сведения о 4-импульсах разлётных частиц.

Ядерные реакции происходят в особых геометрических местах - вершинах взаимодействия. В этих точках сходятся траектории движения сталкивающихся частиц, и из них расходятся траектории движения продуктов реакций. Частица, рождённая в одной вершине, может участвовать в столкновении в другой. То есть некоторые вершины связаны друг с другом, являются звеньями одного каскада реакций. Тогда множество всех вершин можно разбить на непересекающиеся совокупности связанных вершин. Всё многообразие процессов, отображаемое одной подобной совокупностью, называется событием. Каждое событие характеризуется набором вершин и треков, составом промежуточных и конечных частиц.

Абсолютно естественно отделить данные для разных событий друг от друга, а внутри каждого события выделить объекты общей природы, установить между ними взаимосвязи, и произвести определение доступных для расчёта величин. Этот процесс называется реконструкцией событий. В результате реконструкции для всех видов объектов создаются своды однотипных таблиц. Например, таблицы для вершин, траекторий заряженных частиц, обнаруженных частиц, сигналов с детекторов и другие таблицы. Новая система обработанных и структурированных данных, а также набор стандартных функций, применяемых к ним, формируют специальную программную среду - формат DST (Data Summary Таре). Структура формата подробно описывается в предложении [4]. Работа в среде DST позволяет программными методами извлекать данные экспериментов и производить над ними вычисления. В таблицах реконструкции присутствуют как сырые данные, так и полученные при реконструкции величины. Размер одного файла формата DST может достигать 2 Гб. В одном файле описываются сотни тысяч событий. Файлы

Рис. 2: Схема обработки данных

группируются в пакеты, которые принято называть лентами. Одна лента содержит до сотни файлов DST. Описанная схема обработки данных представлена на рис.2.

В течение года на ускорителе организуются два крупных экспериментальных мероприятия - весенний и осенний сеансы. За время одного сеанса записывается несколько десятков лент. Ниже сеансы будут именоваться в виде осень-2012. В таблице 1 приводится общее число событий по рассматриваемым сеансам, а также их внутренние порядковые имена.

сеанс	внутр. номер	число событий				
осень-2012	44	$3.4 \cdot 10^9$				
весна-2013	45	$1.8 \cdot 10^9$				
весна-2015	47	$1.4 \cdot 10^9$				
осень-2015	48	$1.7 \cdot 10^9$				

Таблица 1: Полное число событий в сеансах

4 Исследуемая система

В работе рассматривается эксклюзивная реакция перезарядки:

$$p + \pi^- \rightarrow n + \omega + \omega$$

Нейтроны не регистрируются установкой. Импульс отдачи нейтрона можно определить косвенно при сравнении импульса конечной системы без нейтрона с импульсом пучка.

Каждый ω -мезон с вероятностью 89.3 процента распадается на отрицательный, положительны и нейтральный π -мезоны: π^- , π^+ , π^0 (см. [5]):

$$\omega \to \pi^+ + \pi^- + \pi^0$$

В свою очередь, кажды
й π^0 -мезон может с вероятностью 98.8 процентов распасться на пару гамма-квантов:

$$\pi^0 \to \gamma + \gamma$$

Изображение описанной последовательности реакций приведено на рис.3.

Рис. 3: Схема реакции

5 Отборы

Для выделения из всего массива данных статистики обозначенной реакции требуется провести несколько ступеней отборов:

1) Отсеиваются события, которые не были успешно реконструированы.

2) Отбор по триггеру: продолжается обработка событий с *TriggerMAIN* = 1.

3) Оставляются на рассмотрение события с наличием пучковой частицы и единственной вершиной, из которой в резульате реакции разлетаются 2 отрицательно и 2 положительно заряженные частицы, а также 4 гамма-кванта. Совокупность такого рода ограничений принято называть топологией реакции.

4) Отбираются события, в которых удаётся выделить π^0 -мезоны из систем гамма-квантов. Из 4 гамма-квантов требуется сконструировать два π^0 -мезона. Разбить набор фотонов на две пары можно 3 способами.

Считается, что происходит подсобытие "рождение двух пар гаммаквантов из двух π^0 -мезонов если выполняется следующее условие:

$$(M_{\gamma_a \gamma_b} - m_{\pi^0})^2 + (M_{\gamma_c \gamma_d} - m_{\pi^0})^2 < 0.012^2 GeV^2$$

причём лишь для одной из 3 возможных комбинаций.

5)Отбор событий, в которых удалось выделить два ω -мезона.

Выделяются две мезонные подсистемы, среди которых ищутся распады ω -мезонов:

$$\omega \to \pi^+ + \pi^- + \pi^0$$

Два ω -мезона из трёх пар π^+ -, π^- - и π^0 -мезонов можно сгруппировать 4 способами. Считаем, что набор π -мезонов образуется в результате распада двух ω -мезонов, при выполнении условия для одного и только одного из 4 возможных вариантов:

$$(M_1 - m_{\omega})^2 + (M_2 - m_{\omega})^2 < 0.028^2 GeV^2$$

где M_1 и M_2 - массы трёхмезонных подсистем, соответствующих рассматриваемой комбинации.

6)Отбор по координате вершины, которая не может выходить за геометрические границы мишени с небольшим припуском по высоте и диаметру. В данной работе диаметр допустимой области совпадает с диаметром торца мишени. По высоте даются припуски по 0.5 см с каждого торца. 7) Ограничение величины импульса системы из двух ω -мезонов, то есть величины импульса конечной системы без учёта импульса отдачи нейтрона. Значение допускается в следующем промежутке:

 $26GeV < p(\omega\omega) < 31GeV$

Этот отбор сохраняет события, в которых величина импульса рождённой системы не сильно отличается от установочного импульса пучка - 29 ГэВ/с. В ином случае недетектируемые частицы отдачи в мишени переносили бы большой импульс, и это могло бы стать причиной протекания неупругих неэксклюзивных реакций с рождением систем по неизвестным каналам.

6 Общие распределения эксперимента

В данном разделе приводятся гистограммы отборов, а также распределения, описывающие особенности постановки эксперимента.

На рис.4 представлена гистограмма в логарифмичском масштабе для количества событий по проведённым отборам, начиная с 3-го. Рис.5 изображает количество событий в зависимости от сеанса после проведения первых трёх отборов.

Рис. 4: Гистограмма отборов

сеанс	топол.(3)	$\pi^0 \pi^0$ (4)	$\omega\omega$ (5)	Коорд.верш. (6)	Имп.сист. $\omega\omega$ (7)
осень-2012	$2.5 \cdot 10^{6}$	$5.1 \cdot 10^5$	$2.3 \cdot 10^4$	$1.9 \cdot 10^4$	$1.6 \cdot 10^4$
весна-2013	$1.5 \cdot 10^{6}$	$3.2 \cdot 10^5$	$1.5 \cdot 10^4$	$1.2 \cdot 10^4$	$1.1 \cdot 10^4$
весна-2015	$4.4 \cdot 10^5$	$9.2 \cdot 10^4$	$6.1 \cdot 10^3$	$4.5 \cdot 10^3$	$4.2 \cdot 10^3$
осень-2015	$6.5 \cdot 10^5$	$1.3 \cdot 10^5$	$8.2 \cdot 10^3$	7.10^{3}	$6.5 \cdot 10^3$

Таблица 2: Результаты отборов по сеансам

Как было указано, отбор по топологии допускает события, в которых количество детектированных гамма-квантов равно четырём. Гистограмма по энергиям фотонов приведена на рис.6.

На рис.7 показано распределение по X и Y координатам вершин взаимодействия. Ось z совпадает с направлением пучка. Распределение показывает, что столкновения за пределами радиуса торца мишени (4.5см/2)

Рис. 5: Количество событий по сеансам после отборов 1-3

Рис. 6: Распределение по энергиям гамма-квантов

практически не происходят, а наиболее часто ядерные реакции случаются на оси пучка. Гистограмма заполняется после проведения 1,2 и 3 отборов.

Рис. 7: Распределение по координатам Х, У вершин взаимодействия

7 Выделение π^0 -мезонов

Раздел представляет собой подробное описание отбора 4.

Используется система единиц, в которой c = 1.

Из четырёх гамма-квантов конструируются два π^0 -мезона. Значения их инвариантных масс отложены по осям гистограммы, представленной на рис.8. Гистограмма является трёхзаходной, учитывает три возможных варианта группировки фотонов. Наблюдается высокий пик вблизи точки (m_{π^0}, m_{π^0}) на двумерной плоскости, который включает статистику распада $2\pi^0 \to 4\gamma$. Также присутствует однородная фоновая статистика, которая слабее основной на два порядка.

В лучшем случае для одного события будет сохранена единственная комбинация из трёх. На рис. 9 оставлена ближайшая к точке (m_{π^0}, m_{π^0}) комбинация. Видно, что характер распределения не изменяется, но статистика фона падает на порядок. Многозаходные гистограммы будут в дальнейшем именоваться расширенными, а однозаходные, сохраняющие лучшую комбинацию, - физическими.

Рис. 10 демонстрирует одномерные распределения по массе пары гамма-

квантов. В гистограмму заносятся сведения об обеих сконструированных парах. Изображены расширенная и физическая гистограммы.

Физическая гистограмма фитируется суммой гауссова распределения и полинома второй степени. Результат приведён на рис.11. Ширина гауссовского пика позволяет оценить среднеквадратичное отклонение уширения массы π^0 -мезона. Фитирование даёт $M_{\pi^0} = 0.134 GeV$, $\sigma_{\pi^0} = 6 MeV$. На двумерной гистограмме масс π^0 -мезонов (рис.8) в точке (m_{π^0}, m_{π^0}) откладывается круг радиусом $r = 2\sigma_{\pi^0} = 12 MeV$. Будем считать, что для рассматриваемого события удаётся выделить систему из двух π^0 мезонов, если одна и только одна комбинация из трёх возможных попадает в обозначенный круг. Если условию удовлетворяет несколько комбинаций, событие признаётся неоднозначным и его обработка прекращается. Радиус круга принимается равным двум среднеквадратичным отклонениям для сохранения 95 процентов статистики.

Вновь приведём условие описанного геометрического обрезания по массе:

$$(M_{\gamma_a \gamma_b} - m_{\pi^0})^2 + (M_{\gamma_c \gamma_d} - m_{\pi^0})^2 < 0.012^2 GeV^2$$

К отобранной комбинации применяется процедура 1C-fit, существенно улучшающая результаты обработки. Метод 1C-fit определённым образом изменяет 4-импульсы двух пар гамма-квантов, и даёт на выходе 4-импульсы двух сконструированных π^0 -мезонов. Метод описывается в следующем разделе.

Рис. 8: Трёхзаходная гистограмма по массам двух систем из пар гамма-квантов

Рис. 9: Сохранение лучшей комбинации $\pi^0\pi^0$

Рис. 10: Распределение по массе двухфотонной системы

Рис. 11: Фитирование гистограммы инвариантной массы π^0

8 Meтод 1C-fit

Точность вычисления инвариантных масс сконструированных π^0 -мезонов зависит от погрешности измерения энергий и направлений движения детектированных гамма-квантов, то есть направлений векторов реконструированных импульсов. Однако вклад соответствующего координатного разрешения мал в сравнении со вкладом энергетического разрешения, и можно полагать, что углы разлёта фотонов измеряются точно. Зависимость энергетического разрешения электромагнитного калориметра от энергии описывается следующей эмпирической формулой:

$$\frac{\sigma}{E} = \sqrt{\alpha^2 + \frac{\beta^2}{E}}$$

Значения констант: $\alpha = 0.015, \beta = 0.07\sqrt{GeV}$.

Рождение двух гамма-квантов с подавляющей вероятностью происходит именно при распаде π^0 -мезона. Уширение спектра масс выделенных пар фотонов в области значения массы π^0 -мезона связано в первую очередь с ограниченными измерительными возможностями электромагнитного калориметра. Требуется провести фитирование и получить улучшенные значения энергий гамма-квантов.

Пусть измеренные значения энергий двух фотонов равны E'_1 и E'_2 , а реальные, но неизвестные - E_1 и E_2 . Реальные 4-векторы гамма-квантов:

$$\underline{P_1} = (E_1, \vec{p_1})$$
$$\underline{P_2} = (E_2, \vec{p_2})$$

$$(\underline{P_1} + \underline{P_2})^2 = (E_1 + E_2, \vec{p_1} + \vec{p_2})^2 = 2E_1E_2 - 2P_1P_2\cos\theta = 2E_1E_2(1 - \cos\theta) = (\underline{P_{\pi^0}})^2 = m_{\pi^0}^2 + m_{\pi^0}^2 +$$

$$E_1 E_2 = \frac{m_{\pi^0}^2}{2(1 - \cos\theta)}$$

heta - угол между направлениями движения гамма-квантов.

Измеренные значения E'_1 и E'_2 представляют собой случайные величины, распределения которых предполагаются близкими к нормальным. Возможно ввести величину ρ^2 наподобие χ^2 :

$$\rho^{2} = \left(\frac{E_{1}' - E_{1}}{\sigma_{1}(E_{1}')}\right)^{2} + \left(\frac{E_{2}' - E_{2}}{\sigma_{2}(E_{2}')}\right)^{2}$$

Данный функционал ρ^2 рассматривается как мера отклонения между теоретическими и полученными из опыта значениями энергий. Он зависит от двух переменных, E_1 и E_2 . Производится нахождение условного минимума функции $\rho^2(E_1, E_2)$. Условием является установленная выше связь:

$$E_1 E_2 = \frac{m_{\pi^0}^2}{2(1 - \cos\theta)}$$

Вычисленные E_1 и E_2 принимаются за истинные значения энергий гамма-квантов. Соответствующим образом изменяются и абсолютные значения их импульсов, а направления импульсов сохраняются.

9 Выделение ω -мезонов

Следующей задачей является выделение из двух систем $\pi^+\pi^-\pi^0$ пары ω -мезонов (отбор 5). Подход в общем и целом аналогичен проведённому анализу для π^0 -мезонов.

Сконструировать два ω -мезона из двух π^+ , пары π^- , и двух π^0 -мезонов можно четырьмя способами. На рис.12 представлена четырёхзаходная гистограмма по инвариантным массам двух $\pi^+\pi^-\pi^0$ -систем без применения процедуры 1C-fit. Вновь обнаруживается высокий статистический пик в окрестности интересующей точки (m_{ω}, m_{ω}), однако фон неоднороден. Две ярких полосы, расходящихся от указанной точки, указывают на существенность статистики инклюзивных реакций, когда одну систему $\pi^+\pi^-\pi^0$ можно признать ω -мезоном, а вторую - нет. Видны также сгущения вблизи точек (m_{ω}, m_{η}) и (m_{η}, m_{ω}), которые связаны с реакциями, в которых одна система $\pi^+\pi^-\pi^0$ образуется в результате распада ω -, а вторая - η -мезона. η имеет массу $m_{\eta} = 0.548 GeV$, и распадается по рассматриваемому каналу с вероятностью 22.9 процента. Также на гистограмме проявляет себя распад двух η -мезонов по рассматриваемому каналу.

Распределение с сохранением ближайшей к точке (m_{ω}, m_{ω}) комбинации представлено на рис.13.

Метод 1C-fit значительно улучшает результаты обработки, подавляя фоновую статистику. Это видно при сравнении рис. 12, 13 с подобными рис. 14, 15.

Рис.16 представляет расширенное распределение по инвариантной массе системы $\pi^+\pi^-\pi^0$ с применением 1C-fit и без него. Метод делает пик при m_{ω} более узким и высоким. На рис.17 изображены аналогичные физические гистограммы. В каждую гистограмму заносятся сведения об обеих $\pi^+\pi^-\pi^0$ -системах.

Дальнейшие построения распределений физических величин проводятся только с применённым 1C-fit методом.

Рис.18 изображает результат фитирования физической гистограммы с помощью суммы гауссовского распределения и полинома третьей степени. Положение пика $M_{\omega} = 0.785 GeV$. Ширина среднеквадратичного отклонения $\sigma_{\omega} = 14 MeV$. Условие обрезания по массе определяется удвоенным среднеквадратичным отклонением:

$$(M_1 - m_{\omega})^2 + (M_2 - m_{\omega})^2 < 0.028^2 GeV^2$$

В случае выполнении этого условия полагается, что из двух $\pi^+\pi^-\pi^0$ -систем выделена пара ω -мезонов.

Рис. 12: Четырёхзаходная гистограмма для масс двух систем $\pi^+\pi^-\pi^0$

Рис. 13: Сохранение лучшей комбинации для двух систем $\pi^+\pi^-\pi^0$

Рис. 14: Четырёхзаходная гистограмма с применением 1C-fit

Рис. 15: Однозаходная гистограмма с применением 1C-fit

Рис. 16: Четырёхзаходные гистограммы по инвариантной массе систем
ы $\pi^+\pi^-\pi^0$

Рис. 17: Однозаходные гистограммы по массе $\pi^+\pi^-\pi^0$

Рис. 18: Фитирование гистограммы для массы систем
ы $\pi^+\pi^-\pi^0$

10 Распределения иных физических величин

На всех следующих рисунках изображены по два распределения: до и после отборов 6, 7. То есть отборов по координате вершины и величине импульса системы $\omega\omega$.

Рис.19 представляет распределение событий по координате вершины.

На рис. 20 показано распределение по величине импульса пучковой частицы, на рис. 21 - $\omega\omega-$ системы.

Гистограмма по инвариантной массе $\omega \omega$ -системы приведена на рис.22.

Рис. 19: Распределение по координате z

Рис. 20: Распределение по модулю импульса пучковой частицы

Рис. 21: Распределение по модулю импульса системы $\omega\omega$

На рис.23 изображена гистограмма по величине t', которая определяется следующим образом:

$$t' = -(t - t_{max}) = |t| - |t_{max}|$$

Рис. 22: Распределение по инвариантной массе системы $\omega\omega$

$$t = \left(\underline{P}_{beam} - \underline{P}_{system}\right)^2 = \left(\underline{P}_{recoil} - \underline{P}_{target}\right)^2 < 0$$

$$t_{max} = m_b^2 + m_x^2 - \frac{(s + m_b^2 - m_p^2)(s + m_x^2 - m_n^2)}{2s} + \frac{\lambda^{1/2}(s, m_x^2, m_n^2)\lambda^{1/2}(s, m_b^2, m_p^2)}{2s}$$

$$s = \left(\underline{P}_{beam} + \underline{P}_{target}\right)^2 = \left(\underline{P}_{system} + \underline{P}_{recoil}\right)^2$$

$$\lambda(x, y, z) = (x - y - z)^2 - 4yz$$

Стандартные определения кинематических переменных соответствуют [6].

Рис. 23: Распределение по величине t'

На рис.24 показана гистограмма по величине λ , а также её фитирование линейной функцией. Величина λ нормирована, вычисляется по 4импульсам π -мезонов в системе центра масс соответствующего ω -мезона.

$$\lambda = \frac{[\vec{p}_{\pi^-} \times \vec{p}_{\pi^+}]^2}{\lambda_{max}}$$
$$\lambda_{max} = Q^2 \left(\frac{Q^2}{108} + \frac{m_{\pi}Q}{9} + \frac{m_{\pi}^2}{3}\right)$$
$$Q = T_{\pi^+} + T_{\pi^-} + T_{\pi^0}$$

 T_{π} - кинетическая энергия мезона.

Известен факт, что в случае распада векторной частицы на три псевдоскалярных соответствующее распределение по λ должно быть линейным. Приведённая гистограмма удовлетворяет этому требованию, что свидетельствует о выделении именно распада ω -мезона. При отсутствии фоновых событий в статистике прямая фитирования прошла бы через начало координат. Отношение значений функции распределения при $\lambda =$ 0 и $\lambda = 1$ равно 1/6 = 0.167, что больше значения 0.06 в аналогичном распределении в работе [1]. Присутствие фона можно считать допустимым.

Рис. 24: Фитирование распределения по величине λ

11 Заключение

Выполнена обработка экспериментальных данных установки BEC с использованием программной среды DST для четырёх сеансов: осень-2012, весна-2013, весна-2015 и осень-2015. Проведены семь последовательных отборов событий. Выделена система из двух ω -мезонов. Построены распределения по интересующим физическим величинам.

12 Список использованных источников

[1] В.А. Дорофеев и др. Наблюдение $f_0(1710)$ мезона в системе $\omega \phi$ в пион-Ве взаимодействии при импульсе 29 Гэв.: Препринт НИЦ "Курчатовский институт". - ИФВЭ 2023-6. - Протвино, 2023.

[2] D.V.Amelin Resonances in the $\omega\omega$ System. // Physics of Atomic Nuclei, 2006. Nº4, Pp. 690-698.

[3] В.А. Дорофеев и др. Установка ВЕС. Препринт ИФВЭ [готовится к публикации]. - Протвино, 2023.

[4] Ивашин А. Предложение по формату DST для эксперимента BEC. ИФВЭ, 2011. http://pcbech.ihep.su/ ivashin/dst-1.9.pdf

[5] Particle Data Group, 2020.

[6] Бюклинг Е., Каянти К. Кинематика элементарных частиц. - М.: МИР, 1975.

[7] А.В.Нигоян Поиск высокоспиновых резонансов в системе $\pi^-\pi^+\pi^0$. - Протвино, 2019.